مركز خريدي در يكي از مناطق ايتاليا توانست عنوان ركورد دارا بودن بزرگترين باغچه عمودي جهان را به دست آورد. بنابر اعلام مسئولان ثبت ركوردهاي جهاني گينس، اين باغچه عمودي سطحي برابر با 1263 متر مربع از ديوارهاي فروشگاه را پوشانده و با استفاده از 44 هزار نوع گياه درست شده است.
مدير اين مركز خريد گفت: براي كاشت گياهان به كار گرفته در اين باغچه حدود يك سال وقت صرف كرديم همچنين نصب آنان بر روي سطح ديوار طي 90 روز انجام شد. او همچنين گفت: افرادي كه با روند كاشت اين باغچه آشنا نيستند اين تصور را دارند كه سطح ديوار با خاك پوشيده شده باشد. ركورد پيشين بزرگترين باغچه عمودي جهان به مساحت 844 متر مربع در مادريد اسپانيا به ثبت رسيده بود.گروهی از هنرمندان نمای ساختمانی را با مقداری وسیله مختصر از جمله لوله و قیف طوری طراحی کردهاند که وقتی باران میبارد، آب از روی پشت بام وارد لولهها شده و صدای دلنشینی به گوش میرسد.
سازه های فولادی
مقدمه
فولاد بعنوان ماده ای با مشخصات خاص و منحصر بفرد ، مدتهاست در ساخت ساختمانها کاربرد دارد. قابلیت اجرای دقیق ، رفتار سازه ای معین ، نسبت مقاومت به وزن مناسب ، در کنار امکان اجرای سریع سازه های فولادی همراه با جزئیات و ظرافتهای معماری ، فولاد را بعنوان مصالحی منحصر و ارزان در پروژه های ساختمانی مطرح نموده است ؛ به نحوی که اگر ضعفهای محدود این ماده نظیر مقاومت کم در برابر خوردگی و عدم مقاومت در آتش سوزیهای شدید به درستی مورد توجه و کنترل قرار گیرند ، امکانات وسیعی در اختیار طراح قرار می دهد که در هیچ ماده دیگر قابل دستیابی نیست .
فولاد ، آلیاژی از آهن و کربن است که کمتر از 2 درصد کربن دارد. در فولاد ساختمانی عموما" در حدود 3 درصد کربن و ناخالصیهای دیگری مانند فسفر ، سولفور ، اکسیژن و نیتروژن و چند ماده دیگر موجود می باشد . ساخت فولاد شامل اکسیداسیون و جدانمودن عناصر اضافی و غیر ضروری موجود در محصول کوره بلند و اضافه کردن عناصر مورد نیاز برای تولید ترکیب دلخواه است. برای ساخت فولاد ، از چهار روش اصلی استفاده می شود. این روشها عبارتند از : روش کوره باز ، روش دمیدن اکسیژن ، روش کوره برقی ، روش خلاء . آنچه فولاد را به عنوان یک مصالح ساختمانی مناسب معرفی کرده می تواند شامل موارد زیر باشد : - تغییر شکل در اثر بارگذاری و ایجاد تنش یکنواخت - وجود خاصیت الاستیک و پلاستیک - شکل پذیری - خاصیت چکش خواری و تورق - خاصیت خمش پذیری - خاصیت فنری و جهندگی - خاصیت چقرمگی - خاصیت سختی استاتیکی و دینامیکی - مقاومت نسبی بالا - ضریب ارتجاعی بالا - جوش پذیری - همگن بودن - امکان
استفاده از ضایعات - امکان تقویت مقاطع در صورت نیاز
طراحی ساختمانهای فولادی انتخاب نوع مقطع ، روش ساخت ، روش بهره برداری و محل ساخت ساختمان ، خصوصیات و ویزگیهای متنوعی برای ساخت اسکلت باربر یک ساختمان بوجود می آورد. مزیتهای هر سیستم سازه ای و مصالح مورد نیاز آن سیستم را در صورتی می توان بکار برد که خصوصیات و ویژگیهای آن مصالح و سیستمها در مرحله طراحی به حساب آورده شود و طراح باید در مورد هر یک از مصالح به درستی قضاوت کند. این موضوع بویژه در ساختمانهایی که اسکلت فولادی دارند ضروری است. معیارهای سازه ای زیر اهمیت زیادی در طراحی کلی و ستون گذاری ساختمان دارد : - نوع مقطع - آرایش و روش قرار گیری مقاطع - فواصل تکیه گاهی - اندازه دهانه های سقف - نوع مهاربندی - نوع سیستم صلب کننده - محل قرارگیری سیستم صلب کننده (سیستم فضاسازی داخلی)
برای استفاده بهینه از خواص مطلوب ساختمانهای فولادی ، سیستم فضاسازی داخلی باید بگونه ای اختیار شود که : - متشکل از قطعات پیش ساخته باشد ، بدین منظور که سرعت بیشتر نصب و برپایی سازه ، موجب کوتاه شدن زمان کلی ساخت می شود. – قطعات سبک باشد تا وزن کلی ساختمان به حداقل ممکن برسد. – نوع سیستم انتخاب شده ، سازگار با سیستم سازه ای انتخاب شده باشد. – با یک روش اقتصادی قابل محافظت در برابر آتش باشد.
فضاهای داخلی ساختمان فلزی معمولا" شامل : - سقفها - بام - دیوارهای خارجی - دیوارهای داخلی - سیستم رفت و آمد ( پله و آسانسور ) می باشد که با هماهنگی دقیق و
علمی
این امکان بوجود می آید که اقتصادی ترین روش ساخت و اجرای ساختمان بدست آید.
طراحی با توجه به روش مهاربندی
تمام ساختمانها باید برای مقاومت در برابر نیروی زلزله و باد و یا دیگر نیروهای افقی صلب شوند سیستم صلب کننده باید :
- نیروهای جانبی را به فونداسیون منتقل کندو- تغییر مکانهای افقی را محدود کند.
در ساختمانهای بلند باید ملاحظات ویژه ای برای جلوگیری از ایجاد نوسانات ناشی از باد در نظر گرفته شود. بزرگی نیروهای افقی اعمال شده در اثر باد به عوامل زیر بستگی دارد:
- سرعت باد - شکل آیرودینامیکی ساختمان - وضعیت سطح نما - روشهای صلب کردن
یک قاب سازه ای فولادی را می توان به یکی از روشهای زیر مهاربندی کرد : - سیستمهای قاب صلب - سیستمهای قاب بادبندی - دیوارهای بتنی بصورت دیوارهای برشی یا هسته های بتنی
انتخاب روش صحیح مهاربندی ، اهمیت عمده ای در طراحی سازه ای دارد و حتی ممکن است کل اندیشه طراحی یک ساختمان بلند مرتبه را تحت تاثیر قرار دهد. مهار بندی به وسیله اعضای بادبندی یا دیوارهای بتنی به صورت دیافراگم صلب ، نقاط ثابتی را در ساختمان ایجاد می کند ، به گونه ای که آزادی عمل در جانمایی و معماری داخل ساختمان را محدود می کند.
طراحی با توجه به اجزای تشکیل دهنده فضاهای داخلی ساختمان
انتخاب سیستم مناسب برای اجزای داخلی ساختمان به عوامل مختلفی بستگی دارد. روشهای زیر به طور رایج در ساخت سقفهای متکی به تیرهای فولادی به کار می روند :
- دال بتنی درجا بر روی قالب مناسب
- دال بتنی پیش ساخته
- عرشه فولادی با بتن درجا
عملکرد مرکب بین دال بتنی و تیر فولادی که در هر سه روش امکان پذیر است ، سبب اقتصادی شدن ساخت می گردد. مسئله حفاظت قسمتهای فولادی سقف در برابر آتش سوزی باید در اجرای سقف در نظر گرفته شود. استفاده از سقف کاذب می تواند این کار را به خوبی انجام دهد. در سازه های اسکلت فلزی ، معمولا" دیوارهای خارجی باربر نیستند، برای ساخت این دیوارها ، بنابر شرایط موجود ، از مصالح مختلف استفاده می شود.
اغلب اظهار می شود که هزینه لازم برای محافظت ساختمانهای فلزی در برابر آتش سوزی و خوردگی و عایق بندی صوتی بسار زیاد است ، ولی استفاده از راههای معقول و مناسب برای هر ساختمان ، با توجه به سیستم بکار رفته در آن ، می تواند باعث کاهش این هزینه شود. ایجا یک سیستم محافظت در برابر آتش سوزی در تمام ساختمانهای فلزی لازم و ضروری است. آنچه از اقتصادی در این مسئله حائز اهمیت است ، استفاده از روش صحیح حفاظت اجزای فلزی است. اغلب المانهای داخلی ساختمان مانند سقف و دیوارهای داخلی و خارجی آن بعنوان یک سیستم محافظت در برابر آتش سوزی در ساختمان قابل استفاده است. تیرها و ستونهای فلزی می تواند به روش مناسب در بین این اجزا مدفون شود. در غیر اینصورت باید با روش مناسب اسکلت فولادی ساختمان محافظت شود.
از آنجایی که زنگ زدگی در قطعات داخلی ساختمان فولادی با توجه به رطوبت ناچیز موجود در هوا بعید به نظر می رسد ، محافظت در برابر خوردگی برای این قطعات یک مشکل جدی محسوب نمی شود. بنابراین حفاظت در برابر خوردگی فقط برای قطعات بیرونی و اجزایی که در معرض رطوبت هوا قرار دارند لازم و ضروری است.
مشخصات صوتی یک ساختمان ، بستگی به خواص اجزای داخلی آن دارد مانند نوع سقف و سیستم دیوارهای جداکننده و تیغه ها . در این بین ، سیستم اسکلت باربر ساختمان نقش کمتری دارد رفتار اسکلت یک ساختمان بتنی و فولادی ، با یک سیستم فضاسازی داخلی مشابه ، یکسان است .
توجیه اقتصادی سازه های فولادی
در ارزیابی اقتصادی یک ساختمان فولادی ، فقط در نظر گرفتن قیمت مصالح ساختمانی و نیروی انسانی کفایت نمی کند و بقیه عوامل موثر در این موضوع باید مورد بررسی قرار گیرد. موارد زیر در اقتصاد یک ساختمان موثر است :نظر مقاومت بهتر از مقاطع ديگر عمل مي كند.ضمن اينكه در بيشتر مواقع عمل اتصالات تيرها به راحتي روي آنها انجام مي گيرد.
2- مقاطع مركب : هرگاه سطح مقطع و مشخصات يك نيمرخ (پروفيل ) به تنهايي براي ايستايي ( تحمل بار وارد شده و لنگر احتمالي ) يك ستون كافي نباشد ، از اتصال چند پروفيل به يكديگر ، ستون مناسب آن (مقاطع مركب ) ساخته مي شود.
چگونگي ساخت ستون (مقاطع مركب):
ستونها ممكن است بر حسب نياز با تركيب و اتصالات متنوع از انواع پروفيلهاي مختلف ساخته شوند ، اما رايجترين اتصال براي ساخت ستونها سه نوع است :
1- اتصال دو پروفيل به يكديگر به طريقه دوبله كردن : ابتدا دو تيرآهن را در كنار يكديگر و بر روي سطح صاف به هم چسبيده گردند ؛ سپس دو سر و وسط ستون را جوش داده و ستون برگردانده شده و مانند قبل جوشكاري صورت مي گيرد ؛ آن گاه ستون معكوس و در قسمت وسط ، جوشكاري مي شود . همين كار را در سوي ديگر ستون انجام مي دهند و به ترتيب جوشكاري ادامه مي يابد تا جوش مورد نياز ستون تامين گردد. اين شيوه جوشكاري براي جلوگيري از پيچش ستون در اثر حرارت زياد جوشكازي ممتد مي باشد . در صورتيكه در سرتاسز ستون به جوش نيازي نباشد ، دست كم جوشها بايد به اين ترتيب اجرا گردد :
الف) حداكثر فاصله بين طولهاي جوش در طول ستون به صورت غير ممتد از 60 سانتيمتر تجاوز نكند.
ب) طول جوش ابتدايي و انتهايي ستون بايد برابر بزرگترين عرض مقطع باشد و به طور يكسره انجام گيرد.
ج) طول موثر هر قطعه از جوش منقطع نبايد از 4 برابر بعد جوش يا 40 ميليمتر كمتر باشد.
د) تماس ميان بدنه دو پروفيل نبايد از يك شكاف 5/1 ميليمتري بيشتر ، اما از 6 ميليمتر كمتر باسد ؛ ضمنا بررسيهاي فني نشان دهد مه مساحت كافي براي ساخت ستونها به دست مي ايد. ممكن است در هر طبقه ، ابعاد مقطع ستون با طبقه ديگر تفاوت داشته باشد ؛ بنابراين ، بايد اتصال مقاطع با ابعاد مختلف براي طويل كردن با دقت زيادي انجام شود . محل مناسب براي وصله ستونها به هنگام طويل كردن آنها حداقل در ازتفاع 45 تا 60 سانتي متر بالاتر از كف هر طبقه يا 6/1 ارتفاع طبقه مي باشد. اين ارتفاع اندازه حداقلي است كه از نظر دسترسي به محل اجراي جوش و نصب اتصالات مورد نياز براي ادامه ستون يا اتصال بادبند لازم است.
نحوه طويل كردن ستونها :
ابتدا سطح تماس دو ستون را به خوبي گونيا مي كنند و با سنگ زدن صاف مي نمايند تا كاملا در تماس با يكديگر يا صفحه وصله قرار گيرد . در صورتي كه پروفيل دو ستون يكسان نباسد ، بايد اختلاف دو نمره ستون را با گذاردن صفحات لقمه (هم سو كننده) بر ستون فوقاني را پر نمود ؛ سپس صفحه وصله را نصب كرد و جوش لازم لازم را انجام داد . اگر ابعاد مقطع دو نيمرخ كه به يكديگر متصل مي شوند ، تفاوت زياد داشته باشند ، به طوري كه قسمت بزرگي از سطح آن دو در تماس با يكديگر قرار نگيرد ، در اين صورت بايد يك صفحه تقسيم فشار افقي بين دو نيمرخ به كار برد . اين صفحه معمولا بايد ضخيم انتخاب شود تا بتواند بدون تغيير شكل زياد ، عمل تقسيم فشار را انجام دهد. كليه ابعاد و ضخامت صفحه و مقدار جوش لازم را بايد طبق محاسبه و بر اساس نقشه هاي اجرايي انجام داد.
ستونها با مقاطع دايره اي :
معمولا مقاطع لوله اي (دايره اي ) از قطر 2 تا 12 اينچ براي ستونها بيشتر مورد استفاده قرار مي گيرند. مقطع لوله در مواقعي كه بوسيله اتصال جوش باشد ، آسانتر به كار مي رود . كاربرد لوله بيشتر در پايه هاي بعضي منابع هوايي ، دكلهاي مختلف و خرپاهاي سبك است . اين مقطعها به طور كلي مقاومترند براي اينكه ممان انرسي انها در تمام جهات يكسان است . با تغيير ضخامت مقاطع لوله اي مي توان اينرسي هاي مختلف را به دست آورد.
انحراف مجاز پس از نصب ستون :
همان طور كه گفتم ، ستونها بايد كاملا شاغول بوده و علاوه بر آن ، از محور كلي كه در نقشه آكس بندي مشخص شده است ، نبايد انحرافي بيش از آنچه در آيين نامه ها تعيين سده داشته باشد. در اين جدول ميزان انحراف مجاز ستونها در نگام نصب ، مشخص گرديده است :
قطعه ساختماني حداكثر انحراف
ستون با ارتفاع h انحراف موقعيت مكاني
محور ستون از محور انتخاب شده
آن در سطح اتكاي ستون ................................................................ 5 - +
انحراف محور ستون در انتهاي فوقاني آن از خط شاغول................. 25- + <=1000/H
انحراف از خط شاغول در اثر خم شدن ستون (شكم دادن)............... 15- + <=1000/H
اتصالات تير به ستون فلزي براساس آيين نامه فولاد ايران اتصالات در ساختمان هاي اسكلت فلزي به سه دسته تقسيم مي شوند :a) ساختمان هاي نوع يك : قاب هاي با اتصالات صلب در اين نوع اتصالات پيو ستگي كا مل در محل اتصال تير به ستون بر قرار مي شود و زاويه اوليه بين تير ستون با تامين درجه گيرداري چرخشي (صلبيت)در حدود 90درصد و بيش تر ثابت نگه داشته مي شود b) ساختمان هاي نوع دو:قاب هاي ساده در اين نوع ساختمان هاي گيرداري چرخشي بين تير و ستون در حد امكان پايين نگه داشته مي شوند به اين تر تيب كه حدود 80 درصد چرخش بين تير و ستون در محل اتصال آزاد است c) ساختمان هاي نوع سه :اتصال نيمه گيردار در اين نوع اتصالات گيرداري چرخشي بين اعضاي تير و ستون در محل اتصال از 20درصد تا80درصد نوسان دارد به خاطر اشكالات عمده در تخمين درجه گيرداري در اين حالت از اتصال نيمه صلب استفاده نمي شوداتصالات ساده تير به ستون با نبشي جان در اين اتصال نبشي جان بايد در حد امكان قابل انعطاف (حداكثر نبشي نمره 15*15 )براي اين اتصال فاصله آزاد بين تير و ستون حدود 2 سانتي متر منظور مي شود تا هنگام نصب تير به لحاظ اجرايي مشكلي ايجاد نشود اگر اين فاصله رعايت نشود جا گذاري تير بسيار سخت انجام خواهد شد اين نبشي براي انتقال نيروي برشي بين تير و ستون طراحي مي شود و مي تواد به صورت تكي (در يك طرف جان تير ) و يا دو تايي (در دو طرف جان تير )باشد معمولا از اين اتصال (نبشي جان ) براي تير هاي تكي در طاق ضربي يا اسكلت فلزي استفاده مي شود در عمل به علت ندشتن نبشينشيمن كار نصب در اين حالت با مشكل روبه رو مي شود در جداول زير اندازه نبشي لازم جهت اتصال پروفيل هاي مختلف تير آمده است جهت استفاده از جداول زير شرط Lبزگتر يا مساوي15hبايد برقرار باشد كه در آن : L:طول دهانه تير h : ارتفاع نيم رخ تير جدول نبشي جان در اتصال ساده نقل از راهنماي اتصالات در ساختمان هاي فولادي (دفتر تدوين مقرارات ملي ساختمان. (بعد جوش(mm)طول (cm)نبشينوع پروفيل ،تير)
توضيح: جدول مزبور صرفاً براي تيرآهن بدون هيچ گونه ورق تقويتي كاربرد دارد جدول اتصال ساده نبشي جان به تير زنبورينقل از راهنماي اتصالات ساختمان هاي فولادي (دفتر تدوين مقرارات ملي ساختمان) نوع پروفيلنبشي) طول(cm)بعدجوش توجه : در استفاده از جدول بالا شرط Lبزرگتر يا مساوي 15hنيز بايد برقرار باشد و علاوه بر آن تير هاي لانه زنبوري بدون ورق تقويتي مي باشد اتصال ساده تير به ستون با نبشي نشيمن انعطاف پذيردر اين اتصال تير بر روي يك نبشي نشيمن تقويت نشده قرار مي گيردنكته مهم: در اين اتصال بايد هميشه از يك نبشي بر روي بال بالايي تير (بال فشاري ) كه تنها وظيفه آن تامين تكيه گاه جانبي براي بال فشاري است استفاده نمود اين نبشي اولاً بايد به اندازه ي كافي قابل انعطاف باشد و ثانياً هنگام جوش كاري به هيچ وجه ساق هاي آن در محل اتصال تير و ستون جوش نخورد و فقط در طول نبشي عمل جوش كاري انجام مي شود اندازه نبشي بالايي و جوش آن اسمي است و محاسبه خاصي ندارد در عمل براي IPE14و كم تر نبشي نمره 8 و براي IPE16به بالا نبشي نمره 10به كار مي رود در هر صورت ضخامت نبشي بالايي به هيچ وجه از 6ميلي متر نبايد كم تر باشد مهم:به لحاظ تئوري نيازي به جوش دادن بال پايين تير بر روي نبشي نشيمن نمي باشد اما در عمل اين جوش كاري انجام مي شود جدول نبشي نشيمن انعطاف پذير با دو IPEساده (تير دوبله ساده )
نوع پروفيل نبشي طول(cm)بعد جوش.
مانند قبل شرط Lبزرگتر يا مساوي 15hبايد برقرار باشد تا از جدول بالا استفاده شود ضمناًدو تير، بدون ورق تقويتي و به صورت زير به هم چسبيده اند جدول نبشي نشيمن انعطاف پذير با دو تير لانه زنبوري (2CPE)(نقل از راهنماي اتصالات ساختمان هاي فولادي (دفتر تدوين مقرارات ملي ساختمان (
نوع پروفيل نبشيطول(cm) بعد جوش .
شرط استفاده از جدول مانند قبل مي باشد اتصالات ساده تير به ستون با نشيمن هاي تقويت شدهاگر در اتصال ساده واكنش تكيه گاهي (نيروي برشي در تكيه گاه) از حد قابل قبولي تجاوز كند به منظور جلوگيري از استفاده از نبشي نشيمن با ضخامت بسيار زياد از نيشي تقويت شده استفاده مي شود در تير هاي غير سراسري نبشي نشيمن در دو طرف ستون قرار داده مي شود و تير ها عمود بر ستون روي آن ها قرار مي گيرنداين نوع اتصال جز اتصالات ساده است و بايد توجه شود كه حتماً نبشي انعطاف پذير بالاي بال فشاري اجرا شود در تيرهاي خورجيني تير ها به صورت سراسري دردو طرف ستون اجرا مي شوند از نظر ايستايي از نوع اتصال ساده محسوب مي شوند از لحاظ اقتصادي مقرون به صرفه تر از تيرهاي غير سراسري است (لنگر حداكثر تير سراسري كمتر از تير با تكيه گاه ساده است ) عملكرد خمشي و برشي ديوار برشيوقتي يك ديوار برشي تك تحت نيروي جانبي زلزله قرار مي گيرد شكست در پاي آن (يعني محل اتصال به شالوده) رخ مي دهد كه اين همان محل لنگر خمشي حداكثر است و جالب اين كه نيروي برشي ماكزيمم نيز در همين نقطه قرار دارد اگر در طرح ديوار هاي برشي شكل پذيري متعادلي در همه قسمت ها ي ديوار در نظر گرفته نشود ممكن است صدمات زيادي به بار آورد از نظر شكل ظاهري ديوار هاي برشي ممكن است با اشكال زير مورد استفاده قرار گيرد خرابي در ديوار هاي برشي ساده توپر خرابي در خمش در اين حالت به علت لنگر خمشي زياد از عمل كردنيروي جانبي زلزله در امتداد پهناي ديوار در پاي ديوار مفصل پلاستيك تشكيل مي شود ارتفاعي كه در آن مفصل پلاستيك تشكيل مي شود (منطقه مفصل پلاستيك) در حدود يك يا يك و نيم برابر عمق ديوار است كه بايد به عنوان منطقه بحراني با پيش بيني هاي لازم به خوبي فولاد گذاري شود و به خصوص سلاح برشي (ميل گرد هاي افقي و قائم (غير از ميل گرد هاي خمشي (
فولاد فولاد یکی از مهمترین مصالح ساختمانی به شمار می آید . فولاد از احیا شدن سنگ آهن ، به همراه کک و اکسیژن در کوره های بلند با درجه حرارت زیاد بدست می اید .آهن خام که به این ترتیب به دست می آید بین 3 تا 4 درصد کربن دارد . محاسن فولاد 1)مقاومت زیاد 2) شکل پذیری زیاد 3) یکسان بودن مقاومت و فشار 4) عملکرد مناسب در برابر زلزله به علت شکل پذیری و سبک بودن مهمترین عیب فولاد ضعف در برابر آتش سوزی می باشد . مشخصات مکانیکی فولاد
سازه های ماکارونی به سازه هایی اطلاق می شود ، که مصالح استفاده شده در آنها تنها ماکارونی و چسب می باشد . این سازه ها در مقیاس کوچکتر نسبت به سازه های واقعی طراحی و توسط ماکارونی و چسب ساخته می شوند و پس از ساخت موردبارگذاری قرار می گیرند .
مهندسی سازه (به انگلیسی: Structural engineering) بخشی از مهندسی عمران و مهندسی هوافضا است. در مهندسی عمران، مهندسی سازه در مورد ساختارهای انتقال بار از اجزاء یک ساختمان یا بنا به محل تکیهگاهی آن مانند پی سازه صحبت میکند.
اگر مهندسی سازه را متشکل از دو بخش تحلیل و طراحی بدانیم، سرسلسلهی روابط تحلیلی تئوری الاستیسیته و مرجع بخش طراحی استانداردها و قضاوتهای مهندسی است. درتئوری الاستیسیته از جبر تانسورها استفاده میشودو با استفاده از قانون هوک، دستگاه معادلات دیفرانسیل جزئی تعادل و سازگاری تشکیل میشوند. مشهورترین روش حل عددی این دستگاه معادلات، روشی است به نام اجزا محدود.
مهندسی سازه گرایشی از مهندسی است که با طراحی سیستمهای سازهای به هدف باربری و مقاومت در برابر نیروهای گوناگون وارد بر سازه سروکار دارد.
مهندسی سازه عمدتاً با طراحی ساختمانها و سازههای غیر ساختمانی سر و کار دارد و همچنین نقش ضروری در طراحی ماشین آلات در جاهایی که یکپارچگی سازهای بر روی ایمنی و اطمینان پذیری ماشین تأثیر دارد بازی میکند. ساختههای دست بشر، از مبلمان تا تجهیزات پزشکی، از خودرو و ... نیاز به حضور مهندس سازه دارد.
یک مهندس سازه باید در هنگام طرح یک سازه به دو مسئله توجه کند: مسئلهٔ اول بررسی مقاومت سازه در برابر بارها ی وارد بر سازه که شامل بارهای زنده، بار باد، برف، انسان، اشیا و بار مرده و بار زمین لرزه و... است که با طراحی سیستم باربر ومحاسبه و کنترل مقاومت کافی اعضای سازه در برابر این بارها است. مسئلهٔ دوم بررسی کارایی سازه است یعنی سازه باید فاقد مواردی مانند لرزش و تغییر شکلهای خارج از اندازهٔ مجاز آیین نامه باشد. زیرا این موارد در کاربری سازه مشکل زا هستند و باعث مشکلی مانند ترس در کاربران سازه و یا مواردی مانند ترک خوردن دیوارها و نازک کاریها میشوند.تاریخچه مهندسی سازه با آغاز یک جا نشینی بشر آغاز شد. اولین تاریخچه مدون مهندسی سازه با ساخت اهرام پلهای در مصر توسط آمون هوتپ، که اولین مهندسی که با نام شناخته میشود باز میگردد. در این دوره سازههای عظیمی چون اهرام در مصر، زیگورات چغازنبیل و پارسه (تخت جمشید) در ایران نام برد.